
International Scientific Conference IMEA’2024

PROGRAMMING IN PRIMARY EDUCATION
AND BUILDING 21ST CENTURY

COMPETENCIES

Georgi Hristov

Abstract. This paper offers an overview of the original concept of in-
troducing computer programming into the classroom. The key features of
Scratch, currently the most widely used programming language for teaching
elementary students, are outlined. Additionally, the factors contributing to
Scratch’s growing popularity are examined, along with its role in fostering
students’ computational thinking. Recommendations are made for inte-
grating Scratch into new educational contexts, and some of the most signif-
icant challenges impeding the teaching of programming to young learners
are identified.

The relevance and role of programming-related curricular topics for
students, in the context of developing 21st-century competencies, are ex-
plored. In this regard, the European Digital Competence Framework for
Citizens (DigComp 2.2) is reviewed, with particular attention to the pro-
gramming competency. Examples from DigComp 2.2 are provided to il-
lustrate how this competence manifests in terms of knowledge, skills, and
attitudes.

Key words: Programming for Students, Scratch, DigComp.

Introduction

In recent years, numerous initiatives have been undertaken in many
countries around the world to encourage children to learn programming.
There is a clearly defined educational policy whose aim is not only to train
children to work with digital technologies and specialised software from
an early age, but also to turn them into creators of software products.
In the context of this educational policy in Bulgaria, a special subject
(Computer modelling) was created for pupils in grades III and IV [1], and
the IT curricula in grades V, VI and VII were supplemented with a part
related to the creation of projects in the field of computer modelling and
programming. This development is in line with the political aspiration
to digitise the economy and society worldwide, including the European
Union [2].

265



13 – 15 November 2024, Pamporovo, Bulgaria

In this regard, it is essential to provide a concise review of the his-
tory of programming in the classroom and highlight current trends, with
a particular focus on students in elementary education stage (in grades 3
and 4).

A Brief History of the Emergence of Programming in
Classrooms

The concept of integrating computer programming into classroom in-
struction dates back to the late 1960s, when Seymour Papert and his col-
leagues at MIT developed LOGO, the first programming language specif-
ically designed for children. Through this text-based language, students
could input commands to control a ‘turtle,’ which moved and drew geo-
metric shapes by dragging a pen, thereby introducing young learners to
computational thinking and problem-solving [3].

The LOGO programming language was specifically designed as an
educational tool. Its key features – modularity, extensibility, interactivity,
and flexibility – were intentionally developed to support and enhance the
learning process [4].

LOGO programming activities encompass various fields, including
mathematics, language, music, robotics, telecommunications, and science.
This programming language is utilised for developing simulations, creating
multimedia presentations, and designing games. It is specifically designed
to be accessible to beginners, including young children, while also support-
ing commands and instructions for the execution of more complex projects
by experienced users [4].

Papert firmly adheres to constructivist theory, asserting that the true
potential of programming languages emerges when they facilitate the de-
sign and creation of personally meaningful, computationally rich projects
that encourage children to think in innovative ways [3].

However, it is important to acknowledge that despite the initial en-
thusiasm for teaching all children how to program (with the advent of per-
sonal computers in the 1970s and 1980s.), many schools have subsequently
shifted their focus to using computers for other purposes [5].

Although computers have become widely accessible over the past
20 years (including to children in the 6-18 age group), very few children
have acquired programming skills. Furthermore, programming is often

266



International Scientific Conference IMEA’2024

perceived as a highly specialised activity suitable only for a small segment
of the population [5].

Thus, a question arises: Why has LOGO failed to serve as a moti-
vating force for children to learn programming in this language? Mitchel
Resnick, a former student of Papert and the director of the organisation
that developed the Scratch programming language [6], offers a plausible
explanation for this phenomenon [5].

• Many children encounter difficulties in mastering the syntax of
programming languages.

• Introductory programming projects, such as generating lists of
prime numbers or creating drawings with lines, often fail to en-
gage young learners and do not align with their interests.

• Programming is frequently introduced in contexts where there is
a lack of expertise to provide guidance when challenges arise or to
promote deeper exploration when students experience success.

The Scratch Programming Language

In developing LOGO, Papert followed the philosophy that the lan-
guage should possess characteristics of a “low threshold and no ceiling”.
This concept aims to make the programming language accessible to begin-
ners, including young children (low threshold), while also enabling more
experienced users to undertake complex projects [4].

The developers of Scratch (Scratch is a programming language par-
ticularly popular among students in the 1st to 4th grade age group, was
developed by the Lifelong Kindergarten research group at the MIT Media
Lab.) incorporated these features and introduced an additional charac-
teristic known as “broad sides” [5]. This feature refers to the integration
of appropriate tools designed for implementing various types of projects,
thereby attracting individuals with diverse interests and learning styles to
programming.

Currently, Scratch is the preferred programming language for chil-
dren [7] and it is utilised by millions of young people worldwide. Addition-
ally, a platform has been established that enables learners to create their
own code, exchange ideas, share best practices, and express their opinions
in a forum. Scratch functions as a visual programming environment, al-
lowing users to learn computer programming while developing personally

267



13 – 15 November 2024, Pamporovo, Bulgaria

meaningful projects, such as animated stories and games. A major design
objective of Scratch is to promote independent learning through experi-
mentation and collaboration with peers [8].

A wide range of projects has been developed using Scratch, includ-
ing animated stories, games, online news shows, book reports, greeting
cards, music videos, science projects, tutorials, simulations, and sensor-
driven applications [8]. This extensive variety makes Scratch the largest
free programming community for children globally.

Currently, Scratch is incorporated into the curricula of numerous
schools worldwide, including those in Bulgaria. The language is designed
to be user-friendly, interactive, and engaging, categorising it within the
realm of block-oriented programming languages. As such, Scratch serves
as an effective tool for teaching programming in many educational systems
across various countries.

However, Scratch presumes that children possess foundational skills
in reading and writing, as the programming blocks include words that
correspond to the actions they execute. Additionally, learners are expected
to manage complexity and navigate the virtually limitless possibilities of
adding commands [3, 5].

Ultimately, the fundamental philosophy of Scratch emphasises the
cultivation of computational thinking [5], utilising the principles of con-
structivism, which are inherently integrated into the design of the Logo
programming language [3].

Computation-based thinking is a problem-solving process charac-
terised by the following elements [9]:

• Formulating problems in a manner that enables the use of com-
puters and other tools to assist in solving them.

• Organising and logically analysing information.

• Representing information through abstractions, such as models
and simulations.

• Automating solutions through algorithmic thinking, which involves
establishing a sequence of orderly steps to reach a solution.

• Identifying, analysing, and applying potential solutions to achieve
the most effective and efficient combination of steps and resources.

268



International Scientific Conference IMEA’2024

• Generalising a method for solving a specific problem in order to
apply it to a broader range of issues.

Using Scratch in New Educational Contexts

Drawing upon my teaching experience in programming with students
from grade 1 to grade 12, I propose the following approaches for integrating
Scratch more actively into elementary education:

• Creating and editing vector and raster images.

• Creating and editing sound files.

• Creating projects using lists.

• Creating projects using various forms of artificial intelligence.

The proposal is essentially about using the programming language in
new learning contexts.

However, several unresolved questions persist, particularly regarding
the design and implementation of an appropriate curriculum, the engage-
ment of students through stimulating lessons and projects, the effective
utilisation of children’s cognitive resources to facilitate the acquisition of
knowledge, skills, and attitudes, as well as the application of suitable moti-
vational strategies and gamification techniques within the learning process.

All of these topics and challenges are directly pertinent to ensuring
high-quality programming education for adolescents.

In addition, it is essential to clearly articulate the significance and role
of programming-related curricular topics for students within the framework
of developing 21st-century competencies.

Digital Competence Framework for Citizens

The member states of the European Union have identified, as a polit-
ical priority, the necessity for citizens to recognise that digital competence
is a skill that must be cultivated throughout life [10].

In this context, the European Digital Competence Framework for
Citizens (DigComp 2.2) provides a common language for identifying and
describing key areas of digital competence. It serves as a comprehensive
tool in the EU for enhancing citizens’ digital competence, assisting poli-
cymakers in formulating policies that support the development of digital
skills, and planning educational and training initiatives aimed at improving

269



13 – 15 November 2024, Pamporovo, Bulgaria

the digital competence of specific target groups [11].

According to the document, there are 21 digital competencies organ-
ised into five areas: information literacy, communication and collaboration,
digital content creation, safety, and problem-solving.

Figure 1. Conceptual reference model of

DigComp [11]

Figure 2. Conceptual reference model of

DigComp [11]

DigComp 2.2 provides an integrated framework that includes over 250
examples of digital competencies in EU citizens, encompassing knowledge,
skills, and attitudes.

For the purpose of this paper, it is essential to clarify the meaning of
Competence 4: Programming within Domain 3: Digital Content Creation,
and to provide examples from the document illustrating how this compe-
tence is assessed. The programming competence involves skills to “plan
and develop a sequence of understandable instructions for a computing
system to solve a given problem or to perform a specific task.” [11]. Below
are some of the most important examples.

Examples of an individual’s digital programming competence are pro-
vided in the knowledge domain. The individual is expected to know that:

“151. Knows that computer programs are made of instructions, writ-
ten according to strict rules in a programming language.

154. Knows that programs produce output data depending on input
data, and that different inputs usually yield different outputs . . . ”

In the area of skills, the individual’s capabilities are evaluated based
on the following criteria [11]:

“160. Knows how to combine a set of program blocks. . . , in order to

270



International Scientific Conference IMEA’2024

solve a problem.

161. Knows how to detect issues in a sequence of instructions, and
make changes to resolve them . . . ”

In the area of attitudes, the focus is on personality traits and their
relevance to [11]:

”
164. Willing to accept that algorithms, and hence programs, may

not be perfect in solving the problem that they aim to address.

165. Considers ethics. . . “

Conclusion

Although programming began to be integrated into the curricula of
some schools around the world as early as the late 1960s, its widespread
adoption occurred after the introduction of the Scratch programming lan-
guage. Scratch, which uses a block-oriented programming approach, is now
the most popular programming language worldwide among primary school
students. This language is used in the educational systems of many coun-
tries, including Bulgaria, to acquire initial knowledge, skills and attitudes
in the field of programming. Creating the prerequisites at an early age for
acquiring programming competences is part of the objectives included in
the European Digital Competence Framework for Citizens (DigComp 2.2).
While Scratch provides rich opportunities for the creation of personally
meaningful projects, in a purely educational aspect, ways could be sought
to use the platform in new learning contexts, such as the creation and edit-
ing of raster and vector images, sound files, the creation of projects using
arrays and those using various forms of artificial intelligence.

References

[1] Ministry of education and Science, General Education directorate,
Study programme for Computer modelling for 3rd grade (in Bulgar-
ian), retrieved 20.11.2024 from https://www.mon.bg/nfs/2018/01

/up_km_3kl.pdf.

[2] European Commission, Digital Education Action Plan 2021–2027 Re-
setting education and training for the digital age, COM (2020) 624
final, 2020, retrieved 20.11.2024 from https://education.ec.europ

a.eu/focus-topics/digital-education/action-plan.

[3] M. Bers, Coding and Computational Thinking in Early Childhood:

271



13 – 15 November 2024, Pamporovo, Bulgaria

The Impact of ScratchJr in Europe, European Journal of STEM Edu-
cation, Vol. 3 (3), 2018, https://doi.org/10.20897/ejsteme/3868.

[4] Logo History, retrieved 20.11.2024 from https://el.media.mit.edu

/logo-foundation/what_is_logo/logo_programming.html.

[5] M. Resnick, J. Maloney, A. Hernández, N. Rusk, E. Eastmond, K.
Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, Y. Kafai,
Scratch: Programming for Everyone, Communications of the ACM,
Vol. 52, No. 11, 2009, 60–67, https://doi.org/10.1145/1592761.
1592779.

[6] Mitchel Resnick, retrieved 20.11.2024 from https://www.media.mi

t.edu/people/mres/overview/.

[7] About Scratch, retrieved 20.11.2024 from https://scratch.mit.ed

u/about.

[8] J. Maloney, M. Resnick, N. Rusk, B. Silverman, E. Eastmond, The
Scratch Programming Language and Environment, ACM Transactions
on Computing Education (TOCE), Vol. 10, Issue 4, Article No.: 16,
2010, 1–15, https://doi.org/10.1145/1868358.1868363.

[9] P. Plaza, M. Castro, J. Sáez-López, E. Sancristobal, R. Gil, A.
Menacho, Promoting Computational Thinking through Visual Block
Programming Tools, 2021 IEEE Global Engineering Education Con-
ference (EDUCON), Vienna, Austria, 2021, pp. 1131—1136, DOI:
10.1109/EDUCON46332.2021.9453903.

[10] European Commission, Eurydice Report, 2019, Digital Education at
School in Europe, p. 4, retrieved 20.11.2024 from https://eurydice

.eacea.ec.europa.eu/publications/digital-education-schoo

l-europe, ISBN: 978-92-9492-994-5, DOI: 10.2797/763.

[11] European commission, DigComp 2.2 The Digital Competence Frame-
work for Citizens, 2022, p. 2, retrieved 20.11.2024 from https:

//op.europa.eu/en/publication-detail/-/publication/50

c53c01-abeb-11ec-83e1-01aa75ed71a1/language-en, ISBN: 978-
92-76-48882-8, DOI: 10.2760/115376.

Georgi Hristov,
Sofia University “St. Kliment Ohridski”,
Faculty of Mathematics and Informatics,
5 James Bourchier Blvd., 1164 Sofia, Bulgaria
Corresponding author: gphristov@uni-sofia.bg

272


