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Abstract. In this paper, we focus on the Hamiltonian, which gives rise to a
specific dynamical system. We demonstrate some modules for investigating
the dynamics of the proposed model. Some investigations in the light of
Melnikov’s approach is considered. A possible application of the Melnikov
functions can find in modeling and synthesis of radiation antenna diagrams
is also discussed.
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1. The model

A number of authors devote their research to the phase-space flow of
a particle in a forced cubic and higher order potentials. This problem has
very direct application in mechanics and engineering sciences and can also
be considered as a normal form of a more complex Hamiltonian system.
The publications on this topic are significant and varied (see [1, 2, 3, 4,
5, 6, 7]). We focus on the Hamiltonian, which gives rise to the following
modified dynamical system:

dx

dt
= y

dy

dt
= bx−

[n2 ]−1∑
i=0

bix
n−2i − ε

bx− [n2 ]−1∑
i=0

bix
n−2i

 N∑
j=1

gi sin(jωt).
(1)

1.1. The case n = 3, b = b0 = 1

The Melnikov function [8] is of the form

M(t0) =

∫ ∞
−∞
y0(t)(x0(t)− x3

0(t))
N∑
j=1

gj sin(jω(t+ t0))dt (2)
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with double homoclinic orbit given by: x0(t) = ±
√

2 sech(t);
y0(t) = ∓

√
2 sech(t) tanh(t). The following statements are valid

Proposition 1.1. If N = 1, then the roots of Melnikov function M(t0) are
given as solutions of the equation

M(t0) = −1

6
g1πω

2(−2 + ω2) csch
(πω

2

)
cos(t0ω)

= F1(ω; g1) cos(t0ω) = 0.
(3)

The factor F1(ω; g1) as a function of the parameters ω and g1 is
depicted in Fig. 1 for a) ω = 1.3, g1 = 1 (thick); b) ω = 1, g1 = 1.1
(red); c) ω = 0.9, g1 = 1.15 (green). With a suitable change of variable
t = k cos θ + k1, the expression |M ∗(θ)| can be used to model a character-
istic antenna factor in confidential intervals [9].

Figure 1. The factor F1(ω; g1)

Example 1.1. For N = 1, ω = 0.3, g1 = 1 Melnikov function M(t0) is
depicted in Fig. 2.a. For the fixed values of N , ω and g1 and k = 5.2,
k1 = 0.001 the Melnikov antenna factor (dipole) is presented in Fig. 2.b.

(a) The Melnikov function (b) The Melnikov antenna factor

Figure 2. Case N = 1 (Example 1)
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Proposition 1.2. If N = 2, then the roots of Melnikov function M(t0) are
given as solutions of the equation

M(t0) =
1

12
e−2it0ωπω2

(
−
(

(eit0ω + e3it0ω)g1(−2 + ω2) csch(
πω

2
)
)
−

−8(1 + e4it0ω)g2(−1 + 2ω2) csch(πω)
)

= 0.
(4)

Example 1.2. For N = 2, ω = 0.3, g1 = 0.31, g2 = 0.2 Melnikov function
M(t0) is depicted in Fig. 3.a. For the fixed values of N , ω, g1, g2 and
k = 10.1, k1 = 0.001 the Melnikov antenna factor is presented in Fig. 3.b.

(a) The Melnikov function (b) The Melnikov antenna factor

Figure 3. Case N = 2 (Example 2)

Proposition 1.3. If N = 3, then the roots of Melnikov function M(t0) are
given as solutions of the equation

M(t0) = − e−3it0ωπω2

24(1 + 2 cosh(πω))

((
2e2it0ωg1(−2 + ω2)

+ 2e4it0ωg1(−2 + ω2)+

+ 9g3(−2 + 9ω2) + 9e6it0ωg3(−2 + 9ω2)
)

cosh(
πω

2
)+

+ eit0ω
(
4(1 + e4it0ω)g2(−1 + 2ω2)

+ 8(1 + e4it0ω)g2(−1 + 2ω2) cosh(πω)+

+ eit0ω(1 + e2it0ω)g1(−2 + ω2) cosh(
3πω

2
)
))
×

× csch
(πω

4

)
sech(

πω

4
) sech(

πω

2
)

(5)

Note. Proposition 1.3 holds in the limit −2
3 < Im(ω) < 2

3 .
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Example 1.3. For N = 3, ω = 0.3, g1 = 0.31, g2 = 0.28, g3 = 0.22
Melnikov function M(t0) is depicted in Fig. 4.a. For the fixed values of
N , ω, g1, g2, g3 and k = 12.7, k1 = 0.001 the Melnikov antenna factor is
presented in Fig. 4.b.

(a) The Melnikov function (b) The Melnikov antenna factor

Figure 4. Case N = 3 (Example 3)

If N = 4, then the roots of Melnikov function M(t0) are given as
solutions of the equation (see Fig. 5)

Figure 5. The case N = 4: Melnikov function M(t0) using our module implemented in

CAS Mathematica.

Example 1.4. For N = 4, ω = 0.295, g1 = 0.28, g2 = 0.25, g3 = 0.22, g4 =
0.68 Melnikov function M(t0) is depicted in Fig. 6.a. For the fixed values
of N , ω, g1, g2, g3, g4and k = 9.7, k1 = 0.001 the Melnikov antenna factor
is presented in Fig. 6.b.

Example 1.5. For given N = 2, ω = 0.9, g1 = 2.9, g2 = 1.1, ε = 0.01
the simulations on the system (1) for x0 = 0.1; y0 = 0.1 are depicted on
Fig. 7.
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(a) The Melnikov function (b) The Melnikov antenna factor

Figure 6. Case N = 4 (Example 4)

(a) The solutions of the system (1) (b) Phase plot

Figure 7. Case N = 2 (Example 5)

The reader can generate a Melnikov antenna array for a fixed number
of emitters. For example, if N = 5, then the roots of Melnikov function
M(t0) are given as solutions of the equation (see Fig. 8).

Example 1.6. For N = 5, ω = 0.34, g1 = 0.1, g2 = 0.05, g3 = 0.2, g4 =
0.02, g5 = 0.1 Melnikov function M(t0) is depicted in Fig. 9.a. For the fixed
values of N , ω, g1, g2, g3, g4, g5 and k = 10.4, k1 = 0.001 the Melnikov
antenna factor is presented in Fig. 9.b.

103



13 Nov – 15 Nov 2024, Pamporovo, Bulgaria

Figure 8. The case N = 5: Melnikov function M(t0) using our module implemented in

CAS Mathematica

(a) The Melnikov function (b) The Melnikov antenna factor

Figure 9. Case N = 5 (Example 6)

Using our module implemented in CAS Mathematica in Fig. 10 we
illustrate the generated equation M(t0) = 0 for N = 6. For example, for
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fixed N = 6 Melnikov function and Melnikov antenna array are depicted
in Fig. 11.

Figure 10. The generated equation M(t0) = 0 for N = 6 using our module implemented

in CAS Mathematica.

(a) The Melnikov function (b) The Melnikov antenna factor

Figure 11. Case N = 6
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Of course, this relatively new idea of justification and right to exist is
subject to serious research by specialists working in this scientific direction.
In a number of cases the Melnikov function can be used to approximate
electrical stages.

Example 1.7. Let N = 5; ω = 0.31; g1 = 0.09; g2 = 0.09; g3 = 0.001; g4 =
0.001; g5 = 0.001. A good approximation of the electrical stage by Melnikov
function is depicted on Fig. 12.

Figure 12. A good approximation of the electrical stage

by Melnikov function (Example 7)

1.2. The case n = 5

In this case, the reader can continue the studies related to the gener-
ation of the Melnikov functions given in the previous section, and we will
skip them here. It is sufficient to use the explicit form of homo/hetero-
clinic orbits. For more details, see [10]. A representation for b = −0.4;
b1 = −0.7, b0 = 0.1 is given in Fig. 13.

Figure 13. The homo/heteroclinic orbits

Example 1.8. For given N = 2, ω = 0.3, g1 = 2.9, g2 = 0.8, ε = 0.01 the
simulations on the system for x0 = 0.6; y0 = 0.3 are depicted on Fig. 14.
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(a) The solutions of the system (b) Phase plot

Figure 14. Case N = 2 (Example 8)

Example 1.9. For given N = 4, ω = 0.1, g1 = 1.9, g2 = 0.2, g3 = 0.1,
g4 = 1.6, ε = 0.03 the simulations on the system for x0 = 0.5; y0 = 0.3 are
depicted on Fig. 15.

(a) The solutions of the system (b) Phase plot

Figure 15. Case N = 4 (Example 9)

2. Concluding Remarks

If M(t0) = 0 and M(t0)
dt0
6= 0 for some t0 and some sets of parameters,

then chaos occurs. From the above statements, the reader can formulate
the Melnikov condition for chaotic behavior of the proposed dynamic model
(1). Nonstandard numerical methods connected to the investigation of
the roots of nonlinear equation M(t0) = 0 can be found in [11]. The
investigations can be included as an integral part of a planned much more
general Web-based application for scientific computing [12, 13, 14, 15, 16,
17, 18, 19, 20, 21].
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