TOUCHING CONICS GENERATED BY FEUERBACH CONFIGURATIONS AND HOMOTHETY

Sava Grozdev, Veselin Nenkov, Tatyana Madjarova

Abstract. The following assertion gives an interesting relation between the circumcircle of a triangle and the circle which is inscribed in one of its angles: A circle ω with centre I touches the sides AB and AC of $\triangle ABC$ intersecting the side BC in points X and Y. If Z is the common point of the line through A parallel to BC and the line through I perpendicular to BC, then the circumcircles of $\triangle ABC$ and $\triangle XYZ$ are tangent. The present paper is dedicated to a generalization of that assertion concerning suitably constructed inscribed conics in an angle of a given triangle and a kind of its circumscribed curves.

Key words: Triangle, Conic, Common Points.

Generalization of a geometric problem

Many geometric relations connected with circles could be generalized for suitable conics. Such a relation will be considered in the sequel generalizing the following problem: The circle ω with center I touches the sides AB and AC of $\triangle ABC$ intersecting the side BC and X of Y. Let Z be the common point of the line through A parallel to BC and the line through I perpendicular to BC. Prove that the circumcircles of $\triangle ABC$ and $\triangle XYZ$ are tangent.

It is clear that it is not possible to generalize the problem for arbitrary conics. Special ones are needed. A special type of conics unites the curves belonging to Feuerbach's configurations [2]. If I_0 is an arbitrary point in the plane of $\triangle ABC$ and the points I_A , I_B , I_C determine a harmonic triangle to I_0 , then the midpoints of the segments I_0I_A , I_0I_B , I_0I_C , I_AI_B , I_BI_C and I_CI_A lie on a second degree curve $\bar{k}(O)$ with center O, which is the circumscribed one of $\triangle ABC$. The center O of $\bar{k}(O)$ defines conics in a unique way k, k_A , k_B and k_C with centers I_0 , I_A , I_B and I_C , respectively. The curves k, k_A , k_B and k_C touch a special conic Ω , named Euler's curve and we say that the curves $\bar{k}(O)$, Ω , k, k_A , k_B and k_C determine a Feuerbach's configuration [2]. A basic property of these curves is that they are homothetic. Any two circles are homothetic [2, 3]. Concretely, the tangent circle to AB and AC from the formulated problem is homothetic to the incircle of $\triangle ABC$ with center of homothety A. This is the reason to consider the curve ω with center I, which touches the lines AB and AC being homothetic to k with center of homothety A and coefficient h. Denote by X and Y the intersection points of ω and BC. Let p be the line trough Aparallel to BC, and q the line through I conjugated to BC with respect to $\bar{k}(O)$. The common point of p and q is denoted by Z.

For the generalization of the problem under consideration it is necessary to determine a suitable circumscribe curve ω_0 of $\triangle XYZ$. It turns out that the lines through the midpoints of the sides of $\triangle XYZ$ that are conjugate to the corresponding sides with respect to $\bar{k}(O)$ have a common point W. This is the reason to consider the circumscribe curve ω_0 of $\triangle XYZ$ with centre W. After several necessary constructions by means of the software program GSP (The Geometer's Sketchpad) we notice that the following assertion holds true:

Assertion 1. The curves ω_0 and $\bar{k}(O)$ are tangent at T (Fig. 1, 2).

In such a way we have formulated a generalization of the geometric problem under consideration.

Proof of Assertion 1

The formulation of Assertion 1 is motivated after a certain analysis of the problem under consideration and observations of the new configuration obtained by means of GSP. We need a strict proof. For the purpose we will use barycentric coordinates with coordinate triangle ABC, where A(1, 0, 0), B(0, 1, 0) and C(0, 0, 1) [1].

Let the coordinate representation of the centre k be $I_0(x_I, y_I, z_I)$ $(x_I + y_I + z_I = 1)$. Then, for the centre ω we have that $I(h(x_I - 1) + 1, hy_I, hz_I)$. It is known from [2] and [3] that for the coordinates of the touching points B_I and C_I of k and the lines AC and AB respectively we have:

$$B_{I}\left(\frac{1-2z_{I}}{2y_{I}}, 0, \frac{1-2x_{I}}{2y_{I}}\right), \quad C_{I}\left(\frac{1-2y_{I}}{2z_{I}}, \frac{1-2x_{I}}{2z_{I}}, 0\right)$$
(1)

It follows from (1) that

$$B'_{I}\left(\frac{2y_{I}-h(1-2x_{I})}{2y_{I}}, 0, \frac{h(1-2x_{I})}{2y_{I}}\right), \\C'_{I}\left(\frac{2z_{I}-h(1-2x_{I})}{2z_{I}}, \frac{h(1-2x_{I})}{2z_{I}}, 0\right),$$
(2)

where $B_{I}^{'}$ and $C_{I}^{'}$ are the tangent points of ω with the lines AC and AB respectively.

Figure 1.

As shown in [2], the equation of $\bar{k}(O)$ could be presented in the form

$$\bar{k}(O): \ x_I^2 yz + y_I^2 zx + z_I^2 xy = 0.$$
 (3)

Since the curve ω is homothetic to k, it is homothetic to $\bar{k}(O)$ too. One of the results in [4] implies the existence of a real number h_0 with which the presentation of the equation of ω takes the form:

$$\omega: h_0 \left(x_I^2 yz + y_I^2 zx + z_I^2 xy \right) + \left(a_{11}x + a_{22}y + a_{33}z \right) \left(x + y + z \right) = 0.$$
(4)

We have to determine the coefficients a_{11} , a_{22} and a_{33} depending on h_0 . We will use the conditions for the points B'_I and C'_I to lie on ω , namely $h_0 y_I^2 z x + a_{11} x + a_{33} z = 0$ and $h_0 z_I^2 z x + a_{11} x + a_{22} y = 0$ (they follow from (2) and (4)). The conditions for the lines AC and AB to touch ω are

the following $(a_{11} + a_{33} + h_0 y_I^2) - 4a_{11}a_{33} = 0$ and $(a_{11} + a_{22} + h_0 z_I^2) - 4a_{11}a_{22} = 0$ (they follow from (4)). Using the last four equalities we derive a_{22} and a_{33} by the use of a_{11} :

$$a_{22} = \frac{[h(1-2x_I)-2z_I] [h_0 h z_I (1-2x_I)+2a_{11}]}{2h(1-2x_I)},$$

$$a_{33} = \frac{[h(1-2x_I)-2y_I] [h_0 h y_I (1-2x_I)+2a_{11}]}{2h(1-2x_I)}.$$

The last two equalities and the previous ones imply that

$$a_{11} = \frac{1}{4}h_0h^2 (1 - 2x_I)^2,$$

$$a_{22} = -\frac{1}{4} [2z_I - h (1 - 2x_I)]^2,$$

$$a_{33} = -\frac{1}{4} [2y_I - h (1 - 2x_I)]^2.$$

For the equation of ω we obtain that

$$\omega: \frac{4 \left(x_I^2 y z + y_I^2 z x + z_I^2 x y\right) - h^2 \left(1 - 2x_I\right)^2 x - \left[2z_I - h \left(1 - 2x_I\right)\right]^2 y - \left[2y_I - h \left(1 - 2x_I\right)\right]^2 z = 0.$$
(5)

Figure 2.

The next step is to determine relations between the coordinates of the common points $X(0,\xi, 1-\xi)$ and $X(0,\eta, 1-\eta)$ of the curve ω and the

line *BC*. For the purpose we replace the coordinates of the points X and Y in the equation (5) of ω with x = 0 and z = 1 - y. Thus, we obtain the quadratic equation:

$$4h^{2}x_{I}^{2}y^{2} - 4\left(x_{I}^{2} + y_{I}^{2} - z_{I}^{2} + 2hx_{I}y_{I} - 2hz_{I}x_{I} - hy_{I} + hz_{I}\right)y + (2hx + 2y - h)^{2} = 0$$

If ξ and η are the roots, then according to the Vietta formulae we have:

$$\xi + \eta = \frac{\left(x_I^2 + y_I^2 - z_I^2 + 2hx_Iy_I - 2hz_Ix_I - hy_I + hz_I\right)}{h^2 x_I^2},$$

$$\xi \eta = \frac{\left(2hx + 2y - h\right)^2}{4h^2 x_I^2}$$
(6)

For the coordinates of the point Z we use that it lies on the line p: x = 1 and the line q, determined by the midpoint M_0 and I. Here are the parametric equations of q:

$$q: \begin{cases} x = 1 - h(1 - x_I) + [1 - h(1 - x_I)]t, \\ y = hy_I + [2hy_I - (\xi + \eta)]t, \\ z = hz_I + [2hz_I - 2 - (\xi + \eta)]t. \end{cases}$$

The equations of p and $q \equiv IM_0$ together with the equalities (6) determine the coordinates of the point Z in the form:

$$Z = \left(1, \frac{h(1-2x_I)(z_I-y_I)}{2x_I^2}, \frac{h(1-2x_I)(y_I-z_I)}{2x_I^2}\right).$$

Finding the coordinates of the point W we notice, that the vectors

$$\vec{u_1} = \left(u_{11} = 2x_I^2, \ u_{21} = h(1 - 2x_I)(z_I - y_I) - 2x_I^2\xi, \\ u_{31} = h(1 - 2x_I)(y_I - z_I) - 2x_I^2(1 - \xi)\right), \\ \vec{u_2} = \left(u_{12} = 2x_I^2, \ u_{22} = h(1 - 2x_I)(z_I - y_I) - 2x_I^2\eta, \\ u_{32} = h(1 - 2x_I)(y_I - z_I) - 2x_I^2(1 - \eta)\right)$$

are collinear with the lines XZ and YZ, respectively.

As shown in [5], the coordinates of their conjugate vectors \vec{v}_1 (v_{11} , v_{21} , v_{31}) and \vec{v}_2 (v_{12} , v_{22} , v_{32}) are expressed with the equalities:

$$v_{2j} = y_I^2 u_{1j} + (x_I - z_I)(1 - y_I)u_{2j} - y_I^2 u_{3j},$$

$$v_{3j} = -z_I^2 u_{1j} + z_I^2 u_{2j} + (y_I - x_I)(1 - z_I)u_{3j}, \text{ where } j = 1, 2.$$

The coordinates of the midpoints M_1 and M_2 of the segments XZ and YZ, respectively are expressed in the following way:

$$M_{1} = \left(m_{11} = \frac{1}{2}, m_{21} = \frac{h(z_{I} - y_{I})(1 - 2x_{I})}{4x_{I}^{2}} + \frac{\xi}{2}, \\m_{31} = \frac{h(y_{I} - z_{I})(1 - 2x_{I})}{4x_{I}^{2}} + \frac{1 - \xi}{2}\right), \\M_{2} = \left(m_{12} = \frac{1}{2}, m_{22} = \frac{h(z_{I} - y_{I})(1 - 2x_{I})}{4x_{I}^{2}} + \frac{\eta}{2}, \\m_{32} = \frac{h(y_{I} - z_{I})(1 - 2x_{I})}{4x_{I}^{2}} + \frac{1 - \eta}{2}\right).$$

The parametric equations of the lines s_1 and s_2 , passing through the midpoints of XZ and YZ, also conjugated to XZ YZ, are:

$$s_1: \begin{cases} x = m_{11} + v_{11}t_1, \\ y = m_{21} + v_{21}t_1, \\ z = m_{31} + v_{31}t_1, \end{cases} \quad s_2: \begin{cases} x = m_{12} + v_{12}t_2, \\ y = m_{22} + v_{22}t_2, \\ z = m_{32} + v_{32}t_2, \end{cases}$$

From here we obtain the coordinates x_W and y_W of $W(x_W, y_W, z_W)$:

$$x_W = \frac{\vartheta_x}{2(1 - 2x_I)(1 - 2y_I)(1 - 2z_I)},$$

$$y_W = \frac{\vartheta_y}{4x_I^2(1 - 2x_I)(1 - 2y_I)(1 - 2z_I)},$$

where

$$\vartheta_x = \left\{ 2x_I^2 \left[(z_I - y_I)(1 - 2x_I)h + 1 - 2z_I - 2x_I y_I \right] (\xi + \eta) - 4x_I^2 \xi \eta - (1 - 2x_I)^2 (y_I - z_I)^2 h^2 + 2(1 - 2x_I)(y_I - z_I)(1 - 2z_I - 2x_I y_I)h - 4x_I^2 y_I^2 \right\},$$

•

$$\begin{split} \vartheta_y &= - \Big\{ 2x_I^2 \big[(1 - 2x_I)(y_I - z_I)(1 - 2z_I - 2x_Iy_I)h - 4x_I^2 y_I^2 \big] (\xi + \eta) + \\ &+ 4x_I^4 (1 - 2z_I - 2x_Iy_I) \xi \eta + \\ &+ (1 - 2z_I - 2x_Iy_I) \Big[(1 - 2x_I)^2 (y - z)^2 h^2 + \\ &+ 2(1 - 2x_I)(y_I - z_I)(1 - 2z_I - 2x_Iy_I)h + 4x_I^2 y_I^2 \Big] \Big\}. \end{split}$$

Substituting (6) in ϑ_x and ϑ_y we obtain:

$$x_W = \frac{(1 - 2x_I)h^2 - 2(1 - x_I)h + 2}{2},$$

$$y_W = \frac{h[4x_I^2y_I - h(1 - 2x_I)(1 - 2z_I - 2x_Iy_I)]}{4x_I^2}$$

In addition using the equality $z_W = 1 - x_W - y_W$ we find for z_W that:

$$z_W = \frac{h \Big[4x_I^2 z_I - h(1 - 2x_I)(1 - 2y_I - 2z_I x_I) \Big]}{4x_I^2}.$$

If the equation of ω_0 is $\omega_0 = b_{23}yz + b_{31}zx + b_{12}xy + b_{11}x + b_{22}y + b_{33}z = 0$, then for the coordinates of the points X, Y, Z and the symmetric points X and Y with respect to W, we obtain the equalities:

$$b_{12} = 4x_I^2 z_I^2, \quad b_{23} = 4x_I^4, \quad b_{31} = 4x_I^2 y_I^2,$$

$$b_{11} = h^2 (1 - 2x_I)^2 (y_I - z_I)^2, \quad b_{22} = x_I^2 \Big[h(1 - 2x_I) - 2z_I \Big],$$

$$b_{33} = x_I^2 \Big[h(1 - 2x_I) - 2y_I \Big].$$

Solving the system with the equations of $\bar{k}(O)$ and ω_0 together with x + y + z = 1, we deduce that the two curves have only one common point $T(x_T, y_T, z_T)$ with coordinates:

$$x_{T} = \frac{x_{I}^{2} \Big[h(1 - 2x_{I}) - 2y_{I} \Big] \Big[h(1 - 2x_{I}) - 2z_{I} \Big]}{\tau},$$

$$y_{T} = \frac{hy_{I}(z_{I} - y_{I})(1 - 2x_{I}) \Big[h(1 - 2x_{I}) - 2y_{I} \Big]}{\tau},$$

$$z_{T} = \frac{hz_{I}(y_{I} - z_{I})(1 - 2x_{I}) \Big[h(1 - 2x_{I}) - 2z_{I} \Big]}{83},$$

where

$$\tau = (1 - 2x_I)^2 (1 - 2y_I)(1 - 2z_I)h^2 - 2(1 - x_I)(1 - 2x_I)(1 - 2y_I)(1 - 2z_I)h + 4x_I^2 y_I z_I.$$

Thus, Assertion 1 is proved.

Conclusion

Note that Assertion 1 is valid for central conics (Fig. 1, 2), but there exist Feuerbach's configurations consisted of parabolas. In such a case ω is a parabola with an infinite center $I \equiv I_0 \equiv O$ and it is homothetic to the parabola k with homothety center A. The curves $\bar{k}(O)$ and ω_0 , which is a circumscribe one of ΔXYZ , are parabolas with infinite point I. It is true the following:

Assertion 2. The parabolas ω_0 and $\bar{k}(O)$ are tangent at T (Fig. 3).

Figure 5.

The proof of Assertion 2 is similar to the proof of Assertion 1. The coordinates of the point T are expressed with the equalities:

$$x_T = \frac{(hx_I + y_I)(hx_I + z_I)}{y_I z_I (2h - 1)^2},$$

$$y_T = \frac{h(z_I - y_I)(hx_I + y_I)}{z_I x_I (2h - 1)^2},$$

$$z_T = \frac{h(y_I - z_I)(hx_I + z_I)}{x_I y_I (2h - 1)^2}.$$

Since the homothety coefficient h could take different values, there exist an infinite set of tangent pairs of curves ω_0 and $\bar{k}(O)$ for an arbitrary Feuerbach's configuration.

Finally, it should be noted that Assertions 1 and 2 are found using GSP, while the proofs are justified by the program Maple.

References

- [1] G. Paskalev, I. Chobanov, *Notable points in the triangle*, Narodna prosveta, Sofia, 1985, (In Bulgarian).
- [2] V. Nenkov, A generalization of Feuerbach's theorem, *Mathematics and Informatics*, Vol. 2, 2008, pp. 35–42, ISSN: 1310-2230, (In Bulgarian).
- [3] V. Nenkov, Several properties of the Feuerbach's configuration, Mathematics and Informatics, Vol. 5, 2010, pp. 42–61, ISSN: 1310-2230, (In Bulgarian).
- [4] S. Grozdev, V. Nenkov, Homothetic conics in the plane of a triangle, Mathematics and Informatics, Vol. 2, 2014, pp. 139–154, ISSN: 1310-2230, (In Bulgarian).
- [5] S. Grozdev, V. Nenkov, A geometric construction of Ceva's curve, Mathematics and Informatics, Vol. 1, 2015, pp. 52–57, ISSN: 1310-2230, (In Bulgarian).
- [6] S. Grozdev, For High Achievements in Mathematics: The Bulgarian Experience (Theory and Practice), Association for the Development of Education, Sofia, 2007, ISBN: 978-954-92139-1-1.
- M. Georgieva, S. Grozdev, Morfodynamics for the development of the noosphere intelect, (4th ed.), Publ. House "Iztok-Zapad", Sofia, 2016, ISBN: 987-619-152-869-1, (In Bulgarian).
- [8] S. Karaibryamov, B. Tsareva, B. Zlatanov, Optimization of the Courses in Geometry by the Usage of Dynamic Geometry Software Sam, *The Electronic Journal of Mathematics and Technology*, Vol. 7, 1, 2013, 22 51, ISSN: 1933-2823.
- [9] V. Nenkov, Mathematical competence increase through dynamic geometry, Archimedes 2000, Sofia, 2020, ISBN: 978-954-779-291-3, (In Bulgarian).
- [10] T. Sergeeva, M. Shabanova, S. Grozdev, Foundations of dynamic geometry, ASOU, Moscow, 2014.

Sava Grozdev¹, Veselin Nenkov², Tatyana Madjarova³, ¹ Higher School of Insurance and Finance (VUZF University), 1 Gusla Str., Ovcha Kupel, 1618 Sofia, Bulgaria ^{2,3} Higher Naval School "N. Y. Vaptsarov", 73 Vasil Drumev St., Varna, Bulgaria Corresponding author: sava.grozdev@gmail.com