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THE PROBLEM FOR ISOMORPHISM
OF GROUP ALGEBRAS OF FINITE GROUPS
OVER THE FIELD OF RATIONAL NUMBERS

Yordan Epitropov, Nako Nachev

Abstract. Let G and H be finite groups and Q be the field of rational
numbers. The problem for isomorphism of group algebras over Q is for-
mulated the following way: is it true that QG ∼= QH if and only if G ∼= H?
In this paper we prove that when |G| < 27, then QG ∼= QH always im-
plies G ∼= H. Furthermore, we construct an example that shows that when
|G| = 27 then QG ∼= QH does not imply G ∼= H.
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1. Introduction

Let G and H be finite groups, Q be the field of rational numbers and
the group algebras QG and QH be isomorphic over Q. If G and H are
abelian groups, then from the Theorem of Perlis – Walker [1, Theorem 3]
follows that G and H are isomorphic. This result also holds for some classes
of non-abelian groups. We will show that if |G| < 27, then QG ∼= QH
implies G ∼= H for arbitrary finite groups G and H. Additionally we
construct an example that shows that when |G| = 27 then it is possible
QG ∼= QH does not imply G ∼= H.

2. Initial results

Lemma 2.1. Let G and H are groups, |G| = 8 and Q be the field of
rational numbers. If QG ∼= QH as Q-algebras, then G ∼= H.

Proof: There are only two non-isomorphic non-abelian groups of order
8 – the quaternion group and the dihedral group. In the decomposition
of the rational group algebra of the quaternion group there is a simple
component, isomorphic to division ring of the quaternions over Q. But in
the decomposition of the algebra of the dihedral group there is no such
component and there is a matrix algebra with dimension 22 over Q.
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Lemma 2.2. Let G and H are groups, |G| = 12 and Q be the field of
rational numbers. If QG ∼= QH as Q-algebras, then G ∼= H.

Proof: There are three non-isomorphic non-abelian groups of order 12.
They are with defining relations, respectively 1) a4 = 1, b3 = 1, a−1ba = b2;
2) a2 = 1, b6 = 1, a−1ba = b5; 3) a3 = 1, b2 = 1, c2 = 1, a−1ba = c,
a−1ca = bc, bc = cb and this group is isomorphic to the alternating group
of degree 4. The quotient groups relative to the commutant of those groups
are respectively: 1) a cyclic group of order 4; 2) the Klein four-group; 3)
a cyclic group of order 3. All those groups are non-isomorphic and so the
Lemma is proved.

Lemma 2.3. Let G and H are groups, |G| = 16 and Q be the field of
rational numbers. If QG ∼= QH as Q-algebras, then G ∼= H.

Proof: There are nine non-isomorphic non-abelian groups of order 16.
They are with defining relations, respectively: 1) a2 = 1, b2 = 1, c4 = 1,
a−1ba = bc2, ac = ca, bc = cb; 2) a2 = 1, b4 = 1, c2 = 1, a−1ba = bc,
ac = ca, bc = cb; 3) a4 = 1, b4 = 1, a−1ba = b3; 4) a2 = 1, b8 = 1,
a−1ba = b5; 5) a2 = 1, b2 = c2, c4 = 1, b−1cb = c3, ab = ba, ac = ca; 6)
a2 = 1, b2 = 1, c4 = 1, b−1cb = c3, ab = ba, ac = ca; 7) a2 = 1, b8 = 1,
a−1ba = b3; 8) a2 = 1, b8 = 1, a−1ba = b7; 9) a2 = b4, b8 = 1, a−1ba = b7

and this group is isomorphic to the quaternion group of order 16.

The quotient group relative to the commutant of the groups 1), 5)
and 6) is isomorphic to the abelian group Z2×Z2×Z2. In the Wedderburn
decomposition of the group algebra in case 1) there is a simple component
M2(Q(ε4)), where ε2

4 = −1, but in the decompositions of the algebras in
cases 5) and 6) there is no such component. In the Wedderburn decompo-

sitions of the group algebra in case 5) there is a simple component
(
−1,−1

Q
)

(we use the notation from [2, 1.6]), isomorphic to the division ring of the
quaternions over Q, but in the decomposition of the algebra in case 6) there
is no such component. Therefore those three algebras are non-isomorphic.

The quotient group relative to the commutant of the groups 2), 3)
and 4) is isomorphic to the abelian group Z2 × Z4. In the Wedderburn
decomposition of the group algebra in case 2) there is a simple component
M2(Q). In the Wedderburn decomposition of the group algebra i case 3)

there are simple components M2(Q) and
(
−1,−1

Q
)

. In the Wedderburn de-

composition of the group algebra in case 4) there is a simple component
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M2(Q(ε4)), where ε2
4 = −1. Therefore those three algebras are not isomor-

phic. We note that the noncommutative simple components in cases 1)
and 4) are isomorphic, but their commutative parts are not isomorphic.

The quotient group relative to the commutant of the groups 7), 8)
and 9) are isomorphic to the Klien four-group. In the Wedderburn de-
composition of the group algebra in case 7) there is a simple component
M2(Q(ε)), where ε2 = −2, but in cases 8) and 9) there is no such com-
ponent. In the Wedderburn decomposition of the group algebra in case 9)

there is a simple component
(
−1,−2
Q(ε)

)
, where ε2 = 2, but in case 8) there is

no such component. Therefore those three algebras are not isomorphic.

So the Lemma is proved.

Lemma 2.4. Let G and H are groups, |G| = 18 and Q be the field of
rational numbers. If QG ∼= QH as Q-algebras, then G ∼= H.

Proof: There are three non-isomorphic non-abelian groups of order 18.
They are with defining relations, respectively: 1) a2 = 1, b9 = 1, a−1ba =
b8; 2) a6 = 1, b3 = 1, a−1ba = b2; 3) a2 = 1, b3 = 1, c3 = 1, a−1ba = b2,
a−1ca = c2, bc = cb. The quotient group relative to the commutant of
group 2) is a cyclic group of order 6, and for the groups 1) and 3) it is
a cyclic group of order 2. The Wedderburn decomposition of the group
algebra in case 1) is Q⊕Q⊕M2(Q)⊕M2(Q(ε+ε8)), where ε is a primitive
9-th root of 1 and ε6 + ε3 + 1 = 0, and the Wedderburn decomposition of
the group algebra in case 3) is Q⊕Q⊕M2(Q)⊕M2(Q)⊕M2(Q)⊕M2(Q).

The three algebras are non-isomorphic and therefore the Lemma is
proved.

Lemma 2.5. Let G and H are groups, |G| = 20 and Q be the field of
rational numbers. If QG ∼= QH as Q-algebras, then G ∼= H.

Proof: There are three non-isomorphic non-abelian groups of order 20.
They are with defining relations, respectively: 1) a4 = 1, b5 = 1, a−1ba =
b2; 2) a4 = 1, b5 = 1, a−1ba = b4; 3) a2 = 1, b10 = 1, a−1ba = b9. The
quotient group relative to the commutant of group 3) is of order 2, and for
the groups 1) and 2) is of order 4. In the Wedderburn decomposition of
the group algebra in case 1) there is a simple component M4(Q), but in
case 2) there is no such component. The three algebras are non-isomorphic
and the Lemma is proved.
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Lemma 2.6. Let G and H are groups, |G| = 24 and Q be the field of
rational numbers. If QG ∼= QH as Q-algebras, then G ∼= H.

Proof: There are twelve non-isomorphic, non-abelian groups of order 24.
They are with defining relations, respectively: 1) a2 = b6, b12 = 1, a−1ba =
b7; 2) a2 = 1, b12 = 1, a−1ba = b7; 3) a8 = 1, b3 = 1, a−1ba = b2; 4) a4 = 1,
b6 = 1, a−1ba = b5; 5) a2 = 1, b12 = 1, a−1ba = b5; 6) a2 = 1, b2 = 1,
c6 = 1, b−1cb = c5, ab = ba, ac = ca; 7) a2 = b2, b4 = 1, c3 = 1, a−1ba = b3,
b−1cb = c2, ac = ca; 8) a2 = 1, b4 = 1, c3 = 1, a−1ba = b3, b−1cb = c2,
ac = ca; 9) a2 = 1, b4 = 1, c3 = 1, a−1ba = b3, a−1ca = c2, bc = cb; 10)
a6 = 1, b2 = 1, c2 = 1, a−1ba = c, a−1ca = bc, bc = cb; 11) a3 = 1, b2 = c2,
c4 = 1, a−1ba = c, a−1ca = bc, b−1cb = c3; 12) a2 = 1, b3 = 1, c2 = 1,
d2 = 1, a−1ba = b2, a−1da = cd, b−1cb = cd, b−1db = c, ac = ca, dc = dc
and this group is isomorphic to the symmetric group of degree 4.

The quotient group relative to the commutant of the groups 1) and 2)
is isomorphic to the abelian group Z2×Z6, the quotient group of the groups
4) and 5) is isomorphic to Z2×Z4, and the quotient group of the groups 7),
8) and 9) is isomorphic to Z2×Z2. For the rest of the groups the quotient
groups relative to the commutant are not isomorphic. The Wedderburn
decomposition of the group algebra in case 1) has a simple component(
−1,−1

Q
)

, but in the decomposition of the group algebra in case 2) there is

no such component. The Wedderburn decomposition of the group algebra

in case 4) has a simple component
(
−1,−3

Q
)

, but in the decomposition of

the group algebra in case 5) there is no such component. The Wedderburn
decomposition of the group algebra in case 7) has a simple component(
−1,−1

Q
)

, but in the decomposition of the group algebra in cases 8) and 9)

there is no such component. The Wedderburn decomposition of the group
algebra in case 8) has a simple component M2(Q(ε)), where ε2 = −3,
but in the decomposition of the group algebra in case 9) there is no such
component. The Wedderburn decomposition of the group algebra in case 9)
has a simple component M2(Q(ε)), where ε2 = 3, but in the decomposition
of the group algebra in case 8) there is no such component. So the Lemma
is proved.

3. Main result

Theorem 3.1. Let G and H are groups, |G| < 27 and Q be the field of
rational numbers. If QG ∼= QH as Q-algebras, then G ∼= H.
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Proof: We note that the conditions |G| = |H| and G/G(1) ∼= H/H(1)

immediately follow from the isomorphism QG ∼= QH. From them it follows
that if G is an abelian group, then the theorem holds. Then the remaining
cases to examine are those, in which G is non-abelian group of order 8, 12,
16, 18, 20 or 24. But considering Lemmas 1 to 6, the Theorem is proved
in full.

4. An example of breach of the Problem for isomorphism
when |G| = 27

Let p be an odd prime and G and H be groups of order p3, defined
with generators and defining relations in the following way:

G =
{
a, b | ap = 1, bp

2

= 1, a−1ba = bp+1
}
,

H =
{
x, y, z |xp = 1, yp = 1, zp = 1, x−1yx = yz, xz = zx, yz = zy

}
.

The groups G and H are not isomorphic because in G there is an
element of order p2, while in H there is no such element.

The minimal central idempotents of the group algebra QG are:

e1 =
1

p3

∑
λ∈G

λ, e2 =
1

p3

(
p−

p−1∑
j=0

aj

)(
p−1∑
j=0

bj

)(
p−1∑
j=0

bpj

)
,

e1i =
1

p3

(
p−1∑
j=0

ajbip

)(
p−

p−1∑
j=0

bj

)(
p−1∑
j=0

bpj

)
for i = 1, 2, . . . , p,

e = 1− 1

p

p−1∑
j=0

bpj.

Their corresponding minimal components are: QGe1
∼= Q, QGe2

∼= Q(εp),
where εp is a primitive p-th root of 1, QGe1i

∼= Q(εp), QGe ∼= Mp(Q(εp)).
Therefore the Wedderburn decomposition of QG is:

QG ∼= Q⊕ (p+ 1)Q(εp)⊕Mp(Q(εp)).

The minimal central idempotents of the group algebra QH are of
the same form as of QG where a is replaced by x, b is replaced by y
and bp is replaced by z. The isomorphisms of the corresponding minimal
components of QH are also true as for QG. From here it follows that the
Wedderburn decomposition of QH is the same as of QG, i.e. QG ∼= QH.

75



13 – 15 November 2024, Pamporovo, Bulgaria

References

[1] S. Perlis, G. Walker, Abelian Group Algebras of Finite Order, Trans.
Amer. Math. Soc., Vol. 68, 1950, pp. 420–426, ISSN: 00029947, DOI:
https://doi.org/10.2307/1990406.

[2] R. Pierce, Associative Algebras, Springer-Verlag New York Inc, 2012,
ISBN: 978-1-47-570165-4.

Yordan Epitropov1, Nako Nachev2,
1, 2 Paisii Hilendarski University of Plovdiv,
Faculty of Mathematics and Informatics,
236 Bulgaria Blvd., 4027 Plovdiv, Bulgaria
Corresponding author: epitropov@uni-plovdiv.bg

76


