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Abstract. In this research, we discuss differential-geometric invariants of
a Frenet curve with respect to the group of direct similarities in a four-
dimensional Euclidean space. In terms of the arc-length parameter, the
relations between the shape curvatures of a three-dimensional Frenet curve
and the shape curvatures of its associated four-dimensional Frenet curve
are obtained.
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1. Introduction

The Euclidean curvatures are well-known differential-geometric in-
variants that define a curve up to a rigid motion in n-dimensional Eu-
clidean space (Euclidean n-space) En, n ∈ N, n = 2. Our investigation are
restricted to regular curves of order n in En. In other words, we assume
that every curve α : I ⊂ R −→ En, possesses derivatives up to order n and
for any t ∈ I the derivatives α′(t), α′′(t) ... α(n)(t) are linear independent
vectors in the n-dimensional real vector space Rn. Those curves are named
Frenet curves. Moreover, the Frenet curve can be determined up to a di-
rect similarity of En by n− 1 functions called shape curvatures. They are
introduced in [3], [4] and [5]. In the presented paper, we construct a new
curve in E4 that is associative to a given space curve in E3. Three classes of
curves are considered, which are circular helices, general helices and non-
helical curves. The relations between the differential-geometric invariants
of the corresponding curves make it possible to study the properties of one
curve through the other and vice versa.

2. Frenet curves in the Euclidean three-space

The Euclidean 3-space E3 is regarded as an affine space, and it has
a vector space R3 that is related to it. The position column vector from
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R3 can be used to represent any point in E3. The scalar (or dot) product
a·b ∈ R and the vector cross product a×b ∈ R3 are well-known operations
for any two column vectors a ∈ R3 and b ∈ R3.

Assume α : I −→ E3 be a curve described by a vector parametric
equation

α(t) = (x(t), y(t), z(t))T , t ∈ I. (1)

on an interval I ⊆ R. The coordinate functions x(t), y(t), z(t) are sup-
posed to have continuous derivatives up to order 3. For a Frenet curve α
the Euclidean curvatures of α in E3 (a curvature κ and a torsion τ) are
determined by

κ(t) =
‖α′(t)×α′′(t)‖
‖α′(t)‖3

> 0, τ(t) =

(
α′(t)×α′′(t)

)
·α′′′(t)

‖α′(t)×α′′(t)‖2
6= 0 (2)

Moreover, there are three unit vectors

t(t) =
α′(t)

‖α′(t)‖
, n(t) =

(
α′(t)×α′′(t)

)
×α′(t)

‖α′(t)×α′′(t)‖.‖α′(t)‖
,

b(t) =
α′(t)×α′′(t)
‖α′(t)×α′′(t)‖

(3)

defined at any point α(t) of the curve. A positively orientated orthonormal
basis known as a Frenet frame is formed by these three vectors.

In the case that the Frenet curve α : I −→ E3 is a unit-speed curve,
namely, ‖α′(t)‖ = 1 for any t ∈ I, the parameter “t” is usually substituted
with the parameter “s”, and the vector equation (1) is referred to as an
arc-length parametrisation of α. In this instance, a more straightforward
form of the formulas (2) and (3) can be used. Especially, the torsion and
curvature are

κ(s) = ‖α′′(s)‖ > 0 and τ(s) =

(
α′(s)×α′′(s)

)
·α′′′(s)

‖α′′(t)‖2
6= 0, (4)

respectively.

The Frenet curves in E3 belong to three significant classes: circular
helices as a class and their extension general helices and non-helical curves,
respectively. The arc-length parametrisation of any circular helix is as
follows:

α(s) =
(
p cos(as), p sin(as), bs

)T
, a 6= 0, b 6= 0, p 6= 0, a2p2 + b2 = 1. (5)
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It has a constant curvature and torsion. An alternative parametrization of
an arbitrary unit-speed circular helix is

α(s) =

(√
1− b2

a2
cos(as),

√
1− b2

a2
sin(as), bs

)T

, a, b 6= 0, b ∈ (−1, 1).

The curvature and the torsion of such a curve are κ(s) =
√
a2 (1− b2)

and τ(s) = ab. Any curve in E3 whose tangent vectors form a constant angle
with a fixed unit vector is referred to as a general helix or curve of constant
slope. This fixed vector can be thought of as a vector parallel to the z-axis
without losing generality. Then,

α(s) =
(
x(s), y(s), bs

)
)T , s ∈ I ⊆ R, b ∈ {(−1, 0) ∪ (0, 1)} (6)

and (x′(s))2 + (y′(s))2 + b2 = 1 for any s ∈ I. A Frenet curve in E3 is a
general helix if and only if the ratio of its curvature to torsion is constant
(see Lemas 8.18 and 8.19 in [9]). Naturally, the class of general helices
includes all circular helices as a subclass. Izumiya and Takeuchi have
determined relations between plane curves and general helices in [11]. Ali
(see [1]) studies parametric representations of general helices with a given
curvature function and a given constant angle between the tangent vectors
and a fixed unit vector. Examples of general helices with a unit speed
parametrization can be found in [6] and [7]. The differential geometry of
space curves is described in more detail in [2] and [9].

3. Frenet curves in the Euclidean four-space

We consider the Euclidean four-space E4 to be an affine space with
column four-dimensional vectors in its corresponding real vector space R4.
Accordingly, the position vector X = (x1, x2, x3, x4)

T ∈ R4 may be used
to identify any point X ∈ E4. There is a standard scalar (or dot) product
of two vectors in the vector space R4. If U = (u1, u2, u3, u4)

T and V =
(v1, v2, v3, v4)

T are four-dimensional vectors, then the scalar product of U
and V is the real number U ·V = u1v1 + u2v2 + u3v3 + u4v4 and the norm
of the vector U is ‖U‖ =

√
U ·U =

√
u2

1 + u2
2 + u2

3 + u2
4.

Let γ : I −→ E4 be a unit-speed curve of class C4 defined on an
interval I ⊆ R by a vector parametric equation

γ(s) =
(
γ1(s), γ2(s), γ3(s), γ4(s)

)T
, s ∈ I. (7)
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This suggests that γ ′(s) = d
dsγ(s) is a unit vector for each s ∈ I and

that the coordinate functions γi(s), i = 1, 2, 3, 4 have continuous derivatives
up to order 4.

The curve γ : I −→ E4 given by (7) is a unit-speed Frenet curve if the
vectors γ ′(s), γ ′′(s) = d

dsγ
′(s), γ ′′′(s) = d

dsγ
′′(s) and γ(4)(s) = d

dsγ
′′′(s) are

linearly independent for any s ∈ I, or equivalently det
(
γ

′
(s),γ

′′
(s),γ

′′′
(s),

γ(4)(s)
)
6= 0 for any s ∈ I. According to [10], we can examine four unit

vector functions T(s) = γ ′(s), N1(s), N2(s), N3(s) and three real-valued
curvature functions κ1(s), κ2(s) and κ3(s) satisfying the following condi-
tions for any value of the parameter s:

1. the vectors T(s), N1(s), N2(s), N3(s) form a positively oriented,
ordered basis of R4;

2. the Frenet-Serret equations

T′(s) = κ1(s)N1(s), N′1(s) = −κ1(s)T(s) + κ2(s)N2(s)

N′2(s) = −κ2(s)N1(s) + κ3(s)N3(s), N′3(s) = κ3(s)N2(s),
(8)

as they are known, hold.

Banchoff and Lowett provided explicit curvature formulas and sug-
gested an additional recursive method for figuring out the Frenet frame
in [2]. The unit-speed Frenet curve γ : I −→ E4 is assumed to be pa-
rameterized by (7). Proposition 3.1.9 in Banchoff and Lovett’s book [2]
shows that the curvatures of the curve γ in E4 can be expressed explic-
itly by the matrices B2(s) =

(
γ ′(s)γ ′′(s)

)
, B3(s) =

(
γ ′(s)γ ′′(s)γ ′′′(s)

)
,

B4(s) =
(
γ ′(s)γ ′′(s)γ ′′′(s)γ(4)(s)

)
. More precisely, the first, the second

and the third curvatures are given by

κ1(s) =
√

det
(
B2(s)TB2(s)

)
= ‖γ ′′(s)‖, (9)

κ2(s) =
1

(κ1(s))
2

√
det
(
B3(s)TB3(s)

)
, (10)

κ3(s) =
1

(κ1(s))
3 (κ2(s))

2 det
(
B4(s)

)
). (11)

Keep in mind that the requirement the curve γ to be a Frenet curve in E4

is equivalent to the condition γ to be a curve of class C4 with curvatures
κ1(s) > 0, κ2(s) > 0, and κ3(s) 6= 0.
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The unit-speed Frenet curve γ : I −→ E4 defined by (7) has the
unit tangent vector T(s) = γ ′(s) and the first, the second and the third
unit normal vectors can be expressed as N1(s) = 1

‖γ′′(s)‖γ
′′(s), N2(s) =

1
κ2(s) (N′1(s) + κ1(s)T(s)) , N3(s) = 1

κ3(s) (N′2(s) + κ2(s)N1(s)) .

4. Some relations between the shape curvatures of a
three-dimensional Frenet curve and its associated

four-dimensional Frenet curve

Let I ⊆ R be a zero-containing interval, and let α : I −→ E3 be a
Frenet curve of class C4 with an arc-length parametrisation and a para-
metrical equation

α(s) =
(
x(s), y(s), z(s)

)T
, s ∈ I. (12)

According to the above assumptions, for any s ∈ I, the curvature κ(s) of α
is a positive real number, the torsion τ(s) of α is a nonzero real number and
the Frenet frame

(
t(s),n(s),b(s)

)
is well-defined. The unit-speed curves in

E4 that are closely related to α were studied in [8]. The following theorem
provides the relations between the Euclidean curvatures of a Frenet curve
in E3 and the Euclidean curvatures of its associated Frenet curve in E4.

Theorem 4.1. [8] Let (12) be a parametrization of a unit-speed Frenet
curve α : I −→ E3 of class C4, and let κ(s) and τ(s) be the curvature and
the torsion of α. Suppose that the curve β1 : I −→ E4 is defined by

β1(s) =


1√
2
x(s)

1√
2
y(s)

1√
2
z(s)
s√
2

 =


1√
2

0 0

0 1√
2

0

0 0 1√
2

0 0 0

α(s) +


0
0
0
s√
2

 , s ∈ I. (13)

Then:
(i) β1 is also a unit-speed curve.
(ii) β1 is a unit-speed Frenet curve in E4 with curvatures

K1(s) =
κ(s)√

2
, K2(s) =

κ(s)√
2

√
1 + 2

(
τ(s)

κ(s)

)2

,

K3(s) = −

√
2
(
τ(s)
κ(s)

)′
1 + 2

(
τ(s)
κ(s)

)2

(14)
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if and only if α is a non-helical curve, i.e.,

(
τ(s)

κ(s)

)′
6= 0 for any s ∈ I.

This result allows us to investigate relations between the shape curva-
tures of a three-dimensional Frenet curve α and the corresponding four-
dimensional Frenet curve γ.

Theorem 4.2. Let (12) be a parametrization of a unit-speed Frenet curve
α : I −→ E3 of class C4, and let κ̃(s) 6= 0 and τ̃(s) be the shape curvature
and the shape torsion of α, respectively. Suppose that the curve γ1 : I −→
E4 is defined by

γ1(s) =


1√
2
x(s)

1√
2
y(s)

1√
2
z(s)
s√
2

 =


1√
2

0 0

0 1√
2

0

0 0 1√
2

0 0 0

α(s) +


0
0
0
s√
2

 , s ∈ I. (15)

Then γ1 is a unit-speed Frenet curve in E4 with shape curvatures

κ̃1(s) =
√

2κ̃, κ̃2(s) =
√

1 + 2τ̃ 2 and κ̃3(s) = − 2τ̃ ′

κ̃ (1 + 2τ̃ 2)
(16)

if and only if α is a non-helical curve, i.e., τ̃(s) 6= const for any s.

Proof. The proof follows immediately from the equations (14) in Theo-

rem 4.1 and the formulae κ̃1(s) =

(
1

κ1(s)

)′

, κ̃2(s) =
κ2(s)

κ1(s)
and κ̃3(s) =

κ3(s)

κ1(s)
from [5].

Theorem 4.3. Let α : I → E3 be a unit-speed Frenet curve of class C4

given by (6). Then the curve γ2 : I → E4 defined by

γ2(s) = (x(s), y(s), cos(bs), sin(bs))T , s ∈ I (17)

is a unit-speed curve of class C4 with shape curvatures

κ̃1(s) =

(∫
κ̃ds

)−3 κ̃√(∫
κ̃ds

)−2
+ b4

3 (18)
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κ̃2(s) =

(
A−2

(
κ̃2 + τ̃ 2(∫
κ̃ds

)4 + b4

(
b2 − 2A

))
− κ̃2A−3(∫

κ̃ds
)6

) 1
2

(19)

κ̃3(s) =
−b3(∫
κ̃ds

)3
τ̃

(
τ̃ 2

(
3κ̃(∫
κ̃ds

) + b

)
+ b3

(
1 + τ̃ 2 − 2κ̃2 +

∫
κ̃ds

(
κ̃′ − b2

∫
κ̃ds

)))
×

×

(
A

(
κ̃2 + τ̃ 2(∫
κ̃ds

)4 − 2b4 + b6

)
− κ̃2(∫

κ̃ds
)6

)−1

,

(20)

where A =

(
1

(
∫
κ̃ds)

2 + b4

)
.

Proof. It is clear that the vector function γ2(s) has continuous derivatives

γ ′2(s) = (x′(s), y′(s),−b sin(bs), b cos(bs))
T

γ ′′2 (s) =
(
x′′(s), y′′(s),−b2 cos(bs),−b2 sin(bs)

)T
γ ′′′2 (s) =

(
x′′′(s), y′′′(s), b3 sin(bs),−b3 cos(bs)

)T
γ

(4)
2 (s) =

(
x(4)(s), y(4)(s), b4 cos(bs), b4 sin(bs)

)T (21)

up to fourth order. The first derivative γ ′2(s) is a unit vector function for
any s. Therefore, γ2 is a unit-speed curve. From (21) and [12] it follows
that

det
(
γ ′2(s),γ

′′
2 (s),γ ′′′2 (s),γ

(4)
2 (s)

)
=

= b3

∣∣∣∣ x′′′(s) + b2x′(s) y′′′(s) + b2y′(s)
x(4)(s) + b2x′′(s) y(4)(s) + b2y′′

∣∣∣∣ .
Replacing the determinant and derivatives’ obtained expressions in (9),

(10), and (11), as well as using the formulae κ̃1(s) =
(

1
κ1(s)

)′

, κ̃2(s) = κ2(s)
κ1(s)

and κ̃3(s) = κ3(s)
κ1(s) we obtain (18), (19), and (20).
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