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CURVATURES OF A THREE-DIMENSIONAL
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Cvetelina Dinkova, Radostina Encheva

Abstract. In this research, we discuss differential-geometric invariants of
a Frenet curve with respect to the group of direct similarities in a four-
dimensional Fuclidean space. In terms of the arc-length parameter, the
relations between the shape curvatures of a three-dimensional Frenet curve
and the shape curvatures of its associated four-dimensional Frenet curve
are obtained.
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1. Introduction

The Euclidean curvatures are well-known differential-geometric in-
variants that define a curve up to a rigid motion in n-dimensional Eu-
clidean space (Euclidean n-space) E", n € N, n = 2. Our investigation are
restricted to regular curves of order n in E". In other words, we assume
that every curve e : I C R — [E", possesses derivatives up to order n and
for any ¢ € I the derivatives o/(t), &”(t) ... a™(t) are linear independent
vectors in the n-dimensional real vector space R". Those curves are named
Frenet curves. Moreover, the Frenet curve can be determined up to a di-
rect similarity of E” by n — 1 functions called shape curvatures. They are
introduced in [3], [4] and [5]. In the presented paper, we construct a new
curve in E* that is associative to a given space curve in E3. Three classes of
curves are considered, which are circular helices, general helices and non-
helical curves. The relations between the differential-geometric invariants
of the corresponding curves make it possible to study the properties of one
curve through the other and vice versa.

2. Frenet curves in the Euclidean three-space

The Euclidean 3-space E? is regarded as an affine space, and it has
a vector space R? that is related to it. The position column vector from
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R3 can be used to represent any point in E3. The scalar (or dot) product
a-b € R and the vector cross product axb € R? are well-known operations
for any two column vectors a € R? and b € R3.

Assume o : I — E? be a curve described by a vector parametric
equation

a(t) = (z(t), y(t), 2()", tel. (1)

on an interval I C R. The coordinate functions x(t), y(t), z(t) are sup-

posed to have continuous derivatives up to order 3. For a Frenet curve o«

the Euclidean curvatures of a in E? (a curvature s and a torsion 7) are
determined by

(/(t) x (1)) - & (1)
le(t) x a(t)]]?

_ le/(t) x " (1)]]
[’ (2) ]|
Moreover, there are three unit vectors
o ad(t) nlr) — (a’(t) X a”(t)) x a(t)
R ] M PO Er O R 0]

_ad(t) x a"(t)
P = o) x o (0)]

s(t) >0, 7(t) = £0  (2)

(3)

defined at any point «(t) of the curve. A positively orientated orthonormal
basis known as a Frenet frame is formed by these three vectors.

In the case that the Frenet curve o : I — E? is a unit-speed curve,
namely, ||a/(t)|| = 1 for any ¢ € I, the parameter “t” is usually substituted
with the parameter “s”, and the vector equation (1) is referred to as an
arc-length parametrisation of a. In this instance, a more straightforward
form of the formulas (2) and (3) can be used. Especially, the torsion and
curvature are

x(s) = [|la’(s)]| >0 and 7(s)=

R A

lee” ()]
respectively.

The Frenet curves in [E? belong to three significant classes: circular
helices as a class and their extension general helices and non-helical curves,
respectively. The arc-length parametrisation of any circular helix is as
follows:

a(s) = (pcos(as), psin(as), bs)T, a#0,b#0,p#0, a*p* +b*=1. (5)
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It has a constant curvature and torsion. An alternative parametrization of
an arbitrary unit-speed circular helix is

T
1—b2 1—0b .
a(s) = cos(as), sin(as),bs | , a, b#0,b€ (—1,1).

a? a?

The curvature and the torsion of such a curve are »(s) = /a? (1 — b?)
and 7(s) = ab. Any curve in E? whose tangent vectors form a constant angle
with a fixed unit vector is referred to as a general helix or curve of constant
slope. This fixed vector can be thought of as a vector parallel to the z-axis
without losing generality. Then,

a(s) = (2(s), y(s), bs))", s€ I CR, b e {(-1,0)U(0,1)} (6)

and (z/(s))* + (/(s))> + b® = 1 for any s € I. A Frenet curve in E? is a
general helix if and only if the ratio of its curvature to torsion is constant
(see Lemas 8.18 and 8.19 in [9]). Naturally, the class of general helices
includes all circular helices as a subclass. Izumiya and Takeuchi have
determined relations between plane curves and general helices in [11]. Ali
(see [1]) studies parametric representations of general helices with a given
curvature function and a given constant angle between the tangent vectors
and a fixed unit vector. Examples of general helices with a unit speed
parametrization can be found in [6] and [7]. The differential geometry of
space curves is described in more detail in [2] and [9].

3. Frenet curves in the Euclidean four-space

We consider the Euclidean four-space E* to be an affine space with
column four-dimensional vectors in its corresponding real vector space R*.
Accordingly, the position vector X = (xl,xQ,xg,x4)T € R* may be used
to identify any point X € E% There is a standard scalar (or dot) product
of two vectors in the vector space R, If U = (uy, us, uz,ug)! and V =
(v1,v9,v3,v4)T are four-dimensional vectors, then the scalar product of U

and V is the real number U -V = ujv; + usvy 4+ ugvs + ugvy and the norm
of the vector U is |[U|| = VU - U = \/u? + u} + u3 + u3.

Let v : I — E* be a unit-speed curve of class C* defined on an
interval I C R by a vector parametric equation

v(s) = (n(s), 7a(s), 13(s),1(s))", seT. (7)
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This suggests that v/(s) = L~(s) is a unit vector for each s € I and
that the coordinate functions ~;(s), ¢ = 1, 2, 3, 4 have continuous derivatives
up to order 4.

The curve v : I — E* given by (7) is a unit-speed Frenet curve if the
vectors /(). 7'(s) = /(). 7"(s) = £/(s) and /(s) = £"(s) axe
linearly independent for any s € I, or equivalently det (v'(s),y (), (s),

yW(s)) # 0 for any s € I. According to [10], we can examine four unit
vector functions T(s) = +/(s), Ni(s), Na(s), N3(s) and three real-valued
curvature functions k1(s), ko(s) and k3(s) satisfying the following condi-
tions for any value of the parameter s:

1. the vectors T(s), Ni(s), Na(s), N3(s) form a positively oriented,
ordered basis of R*:

2. the Frenet-Serret equations

T'(s) = r1(s)Na(s), Ni(s) = —ra(s)T ( ) + r2(s)Na(s)
Ny(s) = —ra(s)Ni(s) + r3(s)Ns(s), Ny(s) = r3(s)Na(s),

as they are known, hold.

(8)

Banchoff and Lowett provided explicit curvature formulas and sug-
gested an additional recursive method for figuring out the Frenet frame
in [2]. The unit-speed Frenet curve v : I — E* is assumed to be pa-
rameterized by (7). Proposition 3.1.9 in Banchoff and Lovett’s book [2]
shows that the curvatures of the curve ~ in E* can be expressed explic-
itly by the matrices Bo(s) = (v(s)7(5), Bals) = (v/()7"(s)9"(s).
Bay(s) = (V(s)7"(s)v"(s)yW(s)). More precisely, the first, the second
and the third curvatures are given by

ra(s) = /det (Ba(s) Ba(s)) = [7"(s)]]. (9)

pio(s) = — ; /et (Ba(s)7 By(s)). (10)

(k1(s

1
) = @ Gt ) .

Keep in mind that the requirement the curve v to be a Frenet curve in E*
is equivalent to the condition 4 to be a curve of class C* with curvatures

k1(s) > 0, kao(s) > 0, and r3(s) # 0.
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The unit-speed Frenet curve v : I — E* defined by (7) has the
unit tangent vector T(s) = 4/(s) and the first, the second and the third

unit normal vectors can be expressed as Ni(s) = —|h,,1(3)||7” (s), Na(s) =
o (N1(s) + () T(5))  Na(s) = iy (No(s) + ra(s)Nu(s))

4. Some relations between the shape curvatures of a
three-dimensional Frenet curve and its associated
four-dimensional Frenet curve

Let I C R be a zero-containing interval, and let o : I — E3 be a
Frenet curve of class C* with an arc-length parametrisation and a para-
metrical equation

als) = (2(s), y(s), 2(s))', sel. (12)

According to the above assumptions, for any s € I, the curvature s(s) of
is a positive real number, the torsion 7(s) of a is a nonzero real number and
the Frenet frame (t(s), n(s), b(s)) is well-defined. The unit-speed curves in
E* that are closely related to a were studied in [8]. The following theorem
provides the relations between the Euclidean curvatures of a Frenet curve
in E3 and the Euclidean curvatures of its associated Frenet curve in E*.

Theorem 4.1. [8] Let (12) be a parametrization of a unit-speed Frenet
curve a : I — B3 of class C*, and let s(s) and 7(s) be the curvature and
the torsion of oc. Suppose that the curve By : I — E* is defined by

1
Je(®) 700 0
| v | ] 0 5 0 0
Bi(s) = Lz(s) = 0 0 2 a(s) + 0 , sel. (13)
V2 V2 s
\% 0O 0 O V2
Then:
(i) B1 is also a unit-speed curve.
(ii) By is a unit-speed Frenet curve in EY with curvatures
x(s) () r(s))’
Ki(s) = Ksy(s) = 1+2(—=
=g el ﬁ¢+(m>’
!/
V2 (56) "

2
(s)
1+2<4@>
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7(s)

()

/
if and only if a s a non-helical curve, i.e., < > # 0 for any s € I.

This result allows us to investigate relations between the shape curva-
tures of a three-dimensional Frenet curve av and the corresponding four-
dimensional Frenet curve ~.

Theorem 4.2. Let (12) be a parametrization of a unit-speed Frenet curve
a: I — E3 of class C*, and let 32(s) # 0 and 7(s) be the shape curvature
and the shape torsion of o, respectively. Suppose that the curve vy : I —
E* is defined by

%iac(s) % 0 O 0

B %y(s) B 0 \% 0 0
Yi(s) = Tas) [T o0 O 4 a(s)+| o |, s€l. (1)

V2 72 X

\% 0O 0 O V2

Then 41 is a unit-speed Frenet curve in E* with shape curvatures

27

Ri(s) = V23, Fa(s) = V14 272 and Ry(s) = ———— (16)
(14 272)
if and only if o is a non-helical curve, i.e., T(s) # const for any s.

Proof. The proof follows immediately from the equations (14) in Theo-

1 /
rem 4.1 and the formulae %;(s) = ( ( >> , Ra(s) = '%QES; and K3(s) =
KR1\S KR1lS

a(s) from [5]. O

k1(s)

Theorem 4.3. Let o : [ — E3 be a unit-speed Frenet curve of class C*
given by (6). Then the curve v, : I — E* defined by

Ya(s) = ((s), y(s), cos(bs), sin(bs))", s €1 (17)
is a unit-speed curve of class C* with shape curvatures

Ri(s) = — ) Z (18)
V([ 3ds)” + vt
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Ro(s) = (A«% — b4~(b2 — 2A>> — %)é (19)

R3(s) = U;T[;??(#((f?;ls) +b)
+b3<1+?2—2%2+/%ds(32—bZ/%ds))>>< (20)
X (A(%—Qb“rbﬁ) _Ui—;f> ,

where A = ((f ;ds)z + b4>.

Proof. 1t is clear that the vector function ~»(s) has continuous derivatives

~i(s) = (2'(s),y/(s), —bsin(bs), bcos(bs))"
¥y () = (x”(s), y"(s), —b* cos(bs), —b* sin(bs))T ”
V'(s) = (2" (s),y"(s), b sin(bs), —b* cos(bs)) (21

T

(
754) (s) <:c(4) (s), y (s),b* cos(bs), b? sin(b3)>

up to fourth order. The first derivative ~4(s) is a unit vector function for
any s. Therefore, 75 is a unit-speed curve. From (21) and [12] it follows
that

det (7;(3),7;(5),7;”(3), 54)(5)> -

x///(s) + me/(S) y/”<8) _|_ be/<S)
eW(s) + 22" (s)  yW(s) + b*y"

3

Replacing the determinant and derivatives’ obtained expressions in (9),

/

(10), and (11), as well as using the formulae %1(s) = (#(8))  Fo(s) = m2ls)

K1(s

)
and F3(s) = 2 we obtain (18), (19), and (20). O

T ki(s)
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