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Abstract. The attempts to construct a model that correctly replicates the
market realities reached the maturity to challenge the standard Brownian
Motion (sBM) as the stochasticity driver of the Black-Scholes log-returns.
Recent researches provide arguments to generalize the sBM with a frac-
tional Brownian Motion (fBM) [9, 17]. The capability of fBM-based model
to be in line with the contemporarily admitted stylized facts explains the
quest for the relevant value of the Hurst parameter (H-index). The esti-
mation of the H-index values requires data for the unobservable volatility.
Our inputs for the calibration include high-frequency trades and quotes that
are integrated (regularized) to get a reliable proxy for the instantaneous
variance. The available data span across more than 20 years and cover
a large part of the COVID19 period which allows us concluding whether
the volatility during this turmoil was rough or smooth based on the value
of the inferred H-index. Note that unlike the mathematical context where
“smoothness” means differentiable function, here “smoothness” means to
be smoother than the sBM; respectively, “roughness” means to be rougher
than the sBM.
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1. Introduction

The stylized facts play a key role in the way the humans comprehend
the complicated and vibrating reality around them. The reality complexity
is reduced to a degree that matches the current cognitive capacities. This
simplification is needed and justifiable until it preserves some reality pivots
called stylized facts. Actually, the stylized facts is what we decided a priori
to find in the mirrored simplification of the reality. Hence, any bias in
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defining and enumerating the stylized facts results in a distorted image of
the reality.

Some knowledge branches (like model validation) developed the epis-
temological concept of stylized facts, ways to establish new stylized facts,
and thus secure dynamics of the stylized facts set [31]. Other areas (like
the Financial Mathematics for example) do not have such toolkit; the aca-
demic community attempts to identify which features a financial model
should not miss.

The establishment of stylized facts is important per se and also since
it unlocks further activities, like developing financial models (see for ex-
ample [23]), volatility forecasting [27], and portfolio optimization [22]. Fi-
nancial models are developed to reduce the financial market complexity to
a limited number (one or two but no more than that) of already estab-
lished and agreed upon stylized facts; for example, a model is developed
to reflect the jumps observed on the market, to capture the stochasticity
of the volatility or both of them. Consequently, the model is rated on its
capacity to capture this or that aspect of market activities.

The development of stylized facts got a substantial impetus in 2001
when Rama Cont [10] defined the stylized facts as ‘A set of properties,
common across many instruments, markets and time periods, has been ob-
served by independent studies and classified as “stylized facts”’ and solved
the “model vs. data” dilemma in favor of the latter. Also, he introduced
the challenges created by the availability of high-frequency data and un-
derlined how important is to have processing power.

Cont explored the qualitative properties of the asset returns while
the volatility remains subordinated to the returns in his research. Only
four of totally eleven stylized facts deal with volatility features (Intermit-
tency, Volatility clustering, Volume/volatility correlation, Asymmetry in
time scales). A separate group of stylized facts comprises interactions be-
tween returns and volatility (Conditional heavy tails, Leverage effect).

Since 2001 the majority of academic efforts remains constrained in
verifying that the above stylized facts are still valid. This approach un-
derestimates an important market innovation: the volatility itself became
an asset with the introduction of trading derivatives on the VIX Index (in
2004 for VIX futures and in 2006 for VIX options). The basic way to esti-
mate the volatility via returns reinforces the importance of returns-related
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stylized facts.

Some recent researches establish volatility-related stylized facts when
the volatility is estimated from returns. For example, Masset [30] identifies
several volatility stylized facts (Horizontal dependence, Extreme events,
leverage effects, Vertical dependence) for bull and bear market in emerging
and mature markets. Ghosh and co-authors explore the stylized facts for
crypto currencies [18].

Other studies establish stylized facts for the realized volatility or the
historic volatility. For example, Baillie and co-authors focus on the long-
memory of the realized volatility [1]. Zumbach [41] explored several stylized
facts about the volatility and the volatility increments (Probability Density
Function, Moments Scaling, Relative Excess Kurtosis, Lagged Correlation,
Realized-Historical Volatility Correlation, Trend and Leverage Effects).

Also, some researchers check stylized facts of the implied volatility,
like the mean-reversion property [21], the path-dependency [38], etc. which
allows its prediction [20]. Sinclair [36] explores several stylized facts of the
implied volatility – Volatility Level Dynamics, The Smile and its dynamics,
Term Structure Dynamics.

It is emblematic to mention the numerous attempts to preserve the
sBM as the pivotal tool to establish stylized facts: by end-2024 the book
[26] got its 13th edition. It seems reasonable to ask to what extent our
understanding and the admitted stylized facts keep pace with the market
evolution. Back in the 80s financial markets were expected to match the
Efficient Market Hypothesis [13]. Hence, random walk suffices to describe
and forecast the market dynamics [26]. A couple of decades later the mar-
ket ecosystem required the invention of the Fractal Market Hypothesis [32].
Stochastic tools more sophisticated than the random walk were necessary
[24]. Hence, the sBM was replaced by the fBM even though the latter was
added to the Financial Mathematics’ toolkit by Mandelbrot and Van Ness
back in 1968 [28]. Nowadays, there are attempts to apply the Adaptive
Market Hypothesis to the current market realities [25]. But still there is
no complete set of stylized facts to adequately describe what we observe
on the markets.

Last but not least, let us mention that the available stylized facts
have been designed to grasp the market in its equilibrium mode. The
financial crisis are considered a non-representative exception that appears
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unexpectedly and market’s memory absorbs its echoes. Key elements of
the Fractals [29] and the Chaos Theory [33] were added to the financial
toolkit but still no vivant set of turmoil stylized facts was nailed down from
these theories.

The spillover of the COVID19 pandemic on financial markets exem-
plified the gaps in our understanding of the globalized markets in turbu-
lence (especially the volatility). Consequently, attempts were done to close
these gaps. Vera-Valdes [37] found that the pandemic resulted in a longer
memory of the volatility for the VIX Index and the realized variance; also,
some volatility measures got non-stationary. Bhattacharjee and co-authors
[6] reported persistence and drop of the volatility for sectoral indexes on
India’s National Stock Exchange. Bentes [3] found increased volatility per-
sistence in the G7 markets. Curto and Serrasqueiro [12] focused on three
Cont’s stylized facts (clustering, persistence and asymmetry) of the return
volatility and observed differing reaction for eleven S&P500 sector sub-
indices. Zhang and Fang [39] explored 5-min time series for CSI300 Index
(China) and S&P500 (USA) and found that the multifractal characteristics
increased during the pandemic period.

The purpose of this research is to derive the H-index time series for
a vast data set, study its features during market equilibrium times and
market unrests (especially during the COVID19 pandemic period), and
check whether new volatility-related stylized facts might be established.

The paper is structured as follows. To achieve our goals, we consider
in Section 1 the theoretical background for the volatility structure and
the dynamics of the ruling paradigms. Next, we describe in Section 2 what
algorithm we follow. In Section 3 we derive the H-index series and establish
new stylized facts from their features. Finally, we draw conclusions and
raise recommendations for further studies (Section 4).

2. Theoretical Background

Let us begin with an admitted stylized fact related to the at-the-
money volatility skew (ATMVS). The ATMVS is described as follows:

ψ (τ) :=

∣∣∣∣ ∂∂kσBS (k, τ)

∣∣∣∣
k=0

, (1)

where σBS is the implied Black-Scholes volatility, k is the log-moneyness,
and τ is time to expiry. Fig. 1 of [17] which exemplifies the ATMVS
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reads a curve that reaches infinity as time reaches zeros. On the volatility
side, various approaches are developed to estimate the volatility both on
the long-term end of the curve and on the short-term end; these methods
differ in their capability to capture the above stylized fact.

On the returns side, models are developed with the purpose to ad-
just the basic Black-Scholes model to the contemporary realities and hence
jump component is added to the models to reflect the infinity-reaching
short-term end of the ATMVS curve (example for such models is the Mer-
ton jump diffusion model for the constant volatility and the Bates model
for the stochastic volatility). Such model augmentation comes at the costs
of calibration troubles – for example, the Bates model calibration requires
that eight parameters are inferred.

Recent researches reveal that the ATMVS curve might be fitted by
a power-law of certain parameters; for concrete fit parameters see [17].
This finding opens the door to generalize the sBM with the fBM. Ade-
quately calibrated fBM-based model would pass the reality-checks without
the burdensome jump component [17, 35].

The reliance on the fBM necessitates to define this process and briefly
discuss its properties. The fBM BH

t is a continuous and centered Gaussian
process with covariance function (see [7], pp. 5–6):

E
[
BH
t B

H
s

]
=

1

2

(
t2H + s2H − |t− s|2H

)
, (2)

where H is the Hurst-index, H ∈ (0, 1), and 0 ≤ s < t.

The fBM is marked with several properties:

• BH
0 = 0 and E

[
BH
t

]
= 0 for all t ≥ 0.

• BH
t has homogenous increments, i.e. BH

t+s−BH
s has the same law

as BH
t .

• E
[(
BH
t

)2
]

= t2H .

• BH
t is a self-similar process, i.e. for all a > 0 Law

(
BH
at , t ≥ 0

)
=

Law
(
aHBH

t , t ≥ 0
)
.

• it is not semi-martingale for H 6= 1
2 .

• it is not Markovian process for H 6= 1
2 .
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The self-similarity property links two other fBM properties: the long-
range dependence of increments and the Hölder continuity of any order less
than the H-index, i.e. E

[
|BH

t −BH
s |H−ε

]
≤ k|t − s|H−ε – see [19]. These

two properties reflect the H-index value in the following way:

• when H = 1
2 , then we are talking of sBM;

• when H ∈
(

1
2 , 1
)
, then we have long-range dependence and smooth

paths (smoother than the sBM);

• when H ∈
(
0, 1

2

)
, the process experiences counter-persistence and

rough paths (rougher than the sBM).

3. Approach selected

The literature reveals several approaches to disentangle the long-
range dependence from the Hölder continuity. First, focus on the long-
memory property alone (Comte and Renault coined the Fractional Stochas-
tic Volatility Model [9]); second, focus on the roughness only [17]; third,
separate these two properties by applying Fractional Ornstein-Uhlenbeck
Process, Cauchy Process or Brownian Semistationary Processes (see [2]).

fBM-based model application requires the estimation of the H-index
value. A challenge for H-index calibration is the lack of a unified approach
to follow [4, 5, 34]. Also, the spot volatility is a hidden market signal and
only the realized variance is estimated.

The above challenges might be cured by leveraging the following ap-
proaches:

• run regression to exploit the monofractal property of the fBM (see
[17] for details) which has been criticized by some authors for com-
mitting estimation error [11, 14]. Such implementation includes
calculating moments of log-volatility differences:

m (q,∆) =
1

N

N∑
k=1

∣∣lnσk∆ − lnσ(k−1)∆

∣∣q , (3)

where m is the moment of order q, ∆ is the time lag (days), and σ
is the volatility. Given the fBM monofractal property for various
q, we anticipate to observe m (q,∆) ∝ ∆ζ

q. Hence, we can derive

the H-index value by running regression ζq ≈ qĤ.
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• Run regression to exploit the auto-correlation function of the vola-
tility (see [2] for details). Let us present the volatility as yt =
ln vt = BH

t . Then, the variance is var [yt] = t2H and the covariance
is cov [yt, yt+1] = 1

2{|t|
2H + |t+ ∆|2H −∆2H}. We get the following

auto-correlation function

ρ (∆) =
1

2

{
1 +

(
1 +

∆

t

)2H

−
(

∆

t

)2H
}
. (4)

For sufficiently small ∆
t , we get ln (1− ρ (∆)) = a+2H ln ∆ which

is the base for the regression.

4. Estimating H-index During the COVID19 Period

We model the volatility as σt = c exp
(
vBH

t

)
, where c, v are positive

constants and BH
t is a fBM.

Our research uses the data set from the online Oxford-Man library
(https://oxford-man.ox.ac.uk/research/realized-library/). The
set includes 31 indexes that cover the Americas (the USA, and a couple
of Emerging Markets), Europe, and Asia (incl. some Emerging Markets).
The time ranges from January 2000 to March 2021; in other words, data for
the COVID19 pandemic period is available to us. We are talking of high-
frequency series for 5-min realized variance (RV), 10-min RV, and various
kernels (Tukey-Hanning, Two-Scale/Bartlett, and Non-Flat Parzen) are
applied to integrate the RV. For more details about the features of the
data see [16]. Figure 1.a exemplifies the data subset for S&P500 Index and
5-min integration of the RV via the Tukey-Hanning kernel.

Exploring the data, we observe that data for the STI index is missing
for the period 2008 – 2015 and for this reason the index is excluded from
our research. The DJI data contain negative values for a couple of days.
We removed from the data 10 dates with variance of 0. We believe the
steps taken to secure the data quality cover a limited portion of the data
and thus do not compromise our conclusions.

We challenged the approach defined by statement (3), confirmed the
monofractal property m (q,∆) ∝ ∆ζ

q which is compatible with [17] – see

Figure 1.b. Also, we questioned the link between ζq and Ĥ for several in-
dexes: S&P500 (Figure 2.a), STOXX50E (Figure 2.b), FTSE (Figure 2.c),

and KSE (Figure 2.d). We find that the link between ζq and Ĥ for the
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latter 3 indexes is far from being linear. Table 1 reads the coefficients of a
parabolic fit.

Figure 1. Realized Variance Series and Their Monofractal Property

Log of SPX realized variance 2000−01−03 / 2021−03−25
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Figure 2. Derived H-index Values

(a) H-index Derivation for S&P500

Index

(b) H-index Derivation for STOXX50E

Index

(c) H-index Derivation for FTSE Index (d) H-index Derivation for KSE Index
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Table 1. Quadratic Fit Coefficients

FitCoefficient S&P500 STOXX50E KSE FTSE

intercept −0.0006898 0.01819 −0.002272 0.001306
coef1 0.1693142 0.1631 0.13306 0.162386
coef2 −0.0006323 −0.03238 −0.00948 −0.009459

Hence, we are not able to estimate the H-index by running ζq ≈ qĤ
linear regression. This failure drove us to use the approach defined by
statement (4). Figure 3.a reads the H-index series of S&P500. Next, we
checked whether the same observations apply to other indexes; we find
that the H-index series for STOXX50E (for example) follow the same
patterns (see Figure 3.b). We double check this result by drawing the two
series S&P500 vs. STOXX50E (see Figure 3.c). We would like to exclude
any role of the integrating kernel; hence, we run the same checks for the
Parzen kernel (see Figure 3.d). Figure 3.e presents the H-index series for
the COVID19 period only.

Figure 3. H-index Series
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5. Conclusions and further works

Our research was launched from the ubiquitous position where the
dominant way to estimate volatility (as the standard deviation of asset
log-returns) complicates the derivation of volatility-related stylized facts.
There is no adopted algorithm to reveal volatility-related stylized facts
nor short-list of them and the admitted volatility-related stylized facts lag
behind the current Market Hypothesis. Another obstacle for us is the
under-exploration of market turbulence; stylized facts of market crisis are
mimicked as Market Inefficiency (i.e. a deviation from the Efficient Market
Hypothesis), Market Failures, etc. and the financial crisis is not conceived
as an intrinsic market status. Stylized facts for the historic/realized volatil-
ity are better researched than the features of the implied volatility.

Based on a representative data set for an extensive time period, we
observe scaling property of the log-volatility for a large pool of market
indexes. Also, we confirmed there is link ζq ∝ Ĥ but it is a non-linear.
Our calculations read a material increase of the H-index values during the
COVID19 period; we do not spot similar increase during other turmoils,
like the Global Financial Crisis 2008/2009 for example. On Figure 3.e we
distinguish several sub-periods of the COVID19 pandemic that match the
timing split discovered by other authors (see for example [12, 3]).

We can summarize the key contribution of our research as a couple
of new stylized volatility-related facts. We find that the log-volatility is
rough since the Hurst-index value is H < 1

2 . Additionally, the H-index
value varies within a range and moves in packages with transition period
between the packages. We noted that the log-volatility becomes smoother
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during market misbehavior. We observe that the choice of the kernel type
determines the H-index value but preserves the above conclusions.

We started our research from one stylized fact (ψ (τ)→∞ as τ → 0)
and established couple of stylized facts. We suggest further researches to
create eco-system of the volatility-related stylized facts that would unleash
new findings of academic and practical merits. Additional efforts are nec-
essary to separate the volatility studies from the returns series and hence
a new generation of volatility-estimation methods is needed; new ways
of volatility estimation might inspire a new generation of rough volatility
models in addition to the existing ones, like the rough-Heston, the ex-
tended rough-Heston, the rough-Bergomi model. The next explorations
in this area of the Financial Mathematics might derive the H-index value
by running non-linear regression ζq ≈ qĤ by leveraging the fit coefficients
from Table 1.
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